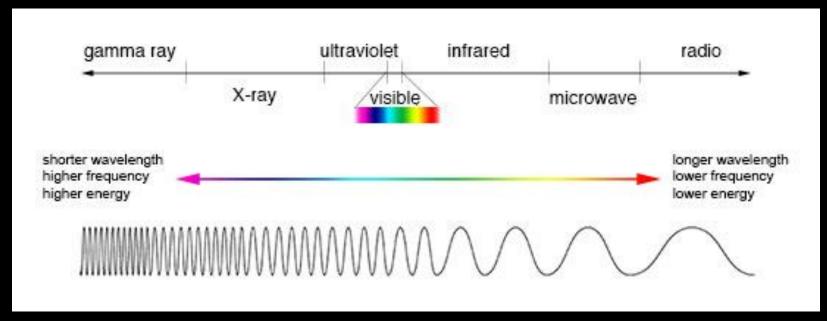
Risk, Opportunity, and Space

Dean W McCall, Ed.D.

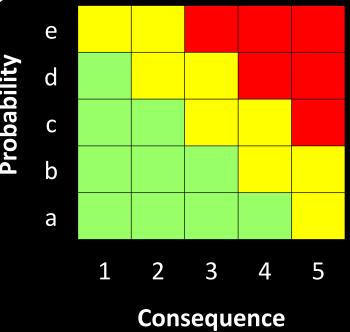
Nov 16, 2021


Asteroid 4660 Nereus

Agenda

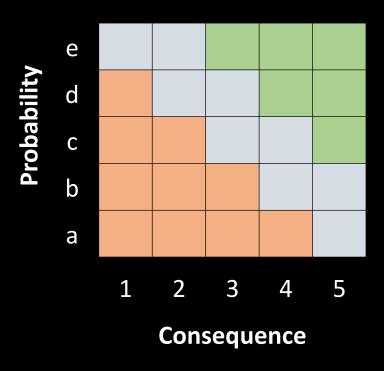
- A few fundamentals so we're on the same page
- Space-related examples
- Quick update on JWST
- Note: presentation includes links to source information

This is interactive -- please ask questions


Technical Fun: Electromagnetic Spectrum

- Remote Sensing (space telescopes, etc.)
 - Gamma-ray and X-ray: see active galaxies, the remnants from massive dying stars, accretion of matter around black holes (i.e., the most energetic objects)
 - Visible light and near-visible light (ultraviolet and infrared)
 - Longer-wavelength: see dark, cool, obscured objects, dusty star-forming regions, dark cold molecular clouds, primordial radiation (e.g., Big Bang)

What is "Risk"?


- Risk: Potential problem with consequences that may or may not manifest
 - What might go wrong, how likely, how much will it hurt?
 - IF <threat> occurs THEN <consequence>
- Handling: What do we do about it?
 - Avoid
 - Transfer
 - Control
 - or Accept

https://www.lockheedmartin.com/content/dam/lockheed-martin/eo/documents/suppliers/training-2017-risk-opportunity-mgmt.pdf

What is "Opportunity"?

- Opportunity: Potential enhancement with consequences that may or may not manifest
 - What might go right, how likely, how much will it help?
 - IF <benefit> occurs THEN <consequence>
- Handling: What do we do about it?
 - Enhance
 - Share
 - Exploit
 - or Ignore

Risk and Opportunity Management

- Process of
 - identifying program risks and opportunities
 - assessing them for potential action
 - implementing action plans
 - monitoring those plans to completion

How Do Risk and Opportunity Apply in Space?

- R&O applies
 - to the fate of the human race
 - Potential NEO impacts
 - Earth sciences, including
 - Climatology
 - Geophysics
 - Heliophysics
 - Technologies that are purposed into sociological cornerstones
 - to the space missions themselves
 - Human safety
 - Return on Investment (ROI)
 - to scientific pursuit
 - Quantum physics
 - Energy
 - Cosmological evolution

Chelyabinsk, Feb 15, 2013

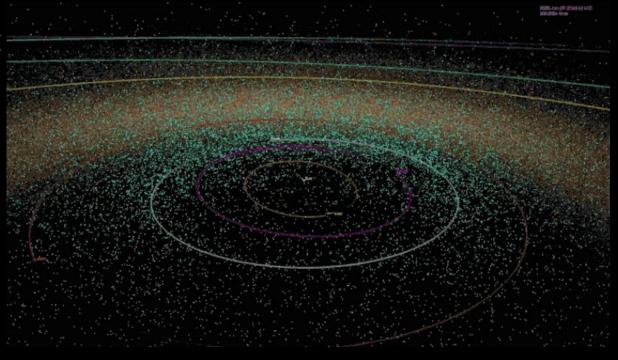
NEO Impacts

- Small asteroid 56 feet in diameter, 11,000 tons, 40,000 mph
- Explosion air burst -- was the equivalent of 470,000 tons of TNT
 - 30-40x the bomb dropped on Hiroshima
- Part of Asteroid 2014 UR116

Tunguska (Siberia), 6/30/1908

Consequence
NEO Impacts
NEO Impacts

Flattened 825 sq miles of forest



Other Asteroids

diameter"

• "To date, NASA has identified approximately 27,000 NEOs, of which about 9,800 measure at least 459 feet (140 m) in diameter and 890 measure 0.6 mile (1 km) in

https://www.livescience.com/surprise-asteroid-flyby
https://earthsky.org/space/mapping-the-threat-of-small-near-earth-asteroids/
https://earthsky.org/space/asteroid-tracking-center-for-near-earth-object-studies/

NEO Impacts

SO, What Do We Do?

Avoid Transfer Control -Accept-

- Survey the sky
 - NEOWise, NEO Surveyor
 - LUCY mission to study Trojan asteroids in Jupiter orbit
 - NASA's Center for Near-Earth Object Studies (CNEOS)
- Get asteroid data
 - OSIRIS-REx (Origins-Spectral Interpretation-Resource Identification-Security-Regolith Explorer) bringing back asteroid Bennu sample in 2023
 - Deep Impact mission (2013) to comet Tempel 1
- Test potential solutions
 - NASA's DART (Double Asteroid Redirection Test) mission to Asteroid Didymos
 - Late 2021 launch
 - Crash into moonlet, see what if any alteration to trajectory
- Simulations

https://www.livescience.com/surprise-asteroid-flyby https://www.space.com/what-would-happen-asteroid-hit-earth-dart-video https://solarsystem.nasa.gov/missions/deep-impact-epoxi/in-depth/

Geophysics

Psyche Mission

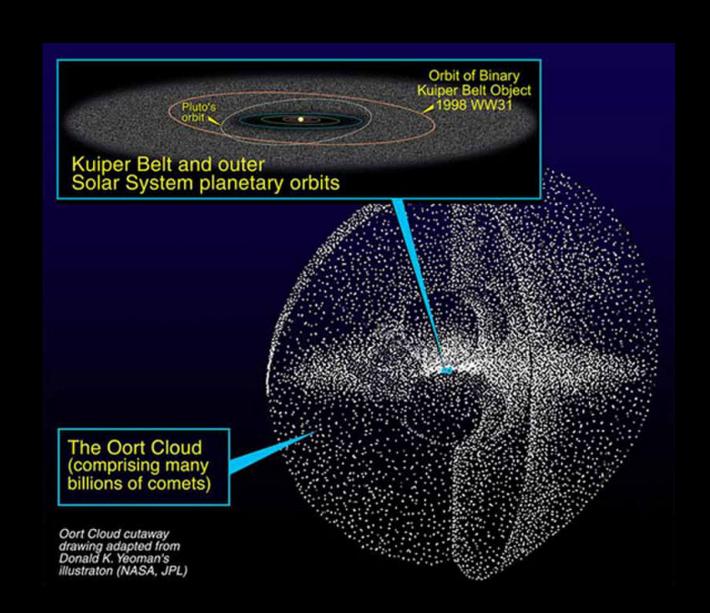
- 2022 launch to asteroid 16 Psyche to study what appears to be the exposed nickel-iron core of an early planet between Mars and Jupiter
 - Better understand earth's core without digging
- Possible vast quantities of gold, platinum, diamond worth quadrillions
- Too far to bring back samples, but
 - Recent study shows over ten asteroids that could be captured and brought to near-earth orbit with existing technology
 - Potential mining depending on content

Parker Solar Probe

- Flies through the sun's atmosphere
 - Multiple passes, successively closer
 - 9th approach on 8/9/2021
 - 330,000 mph, 6.5 million miles from surface
 - 430,000 mph, 2,500° F at closest approach

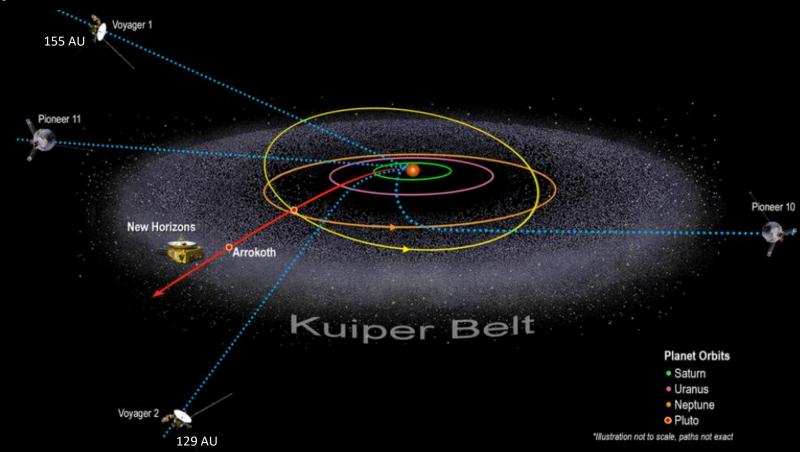
- Measures solar wind, solar particles, heat, radiation, magnetics, chemistry
 - Space weather prediction
 - Add to quantum physics body of knowledge
 - Better understand fusion energy
- Did you know: Sun's atmosphere is thousands of degrees hotter than its surface

Solar *System*


- Sun
- Inner planets
- Asteroid belt
- Outer planets
- Kuiper belt
- Oort cloud

Is Pluto a planet? Why or why not?

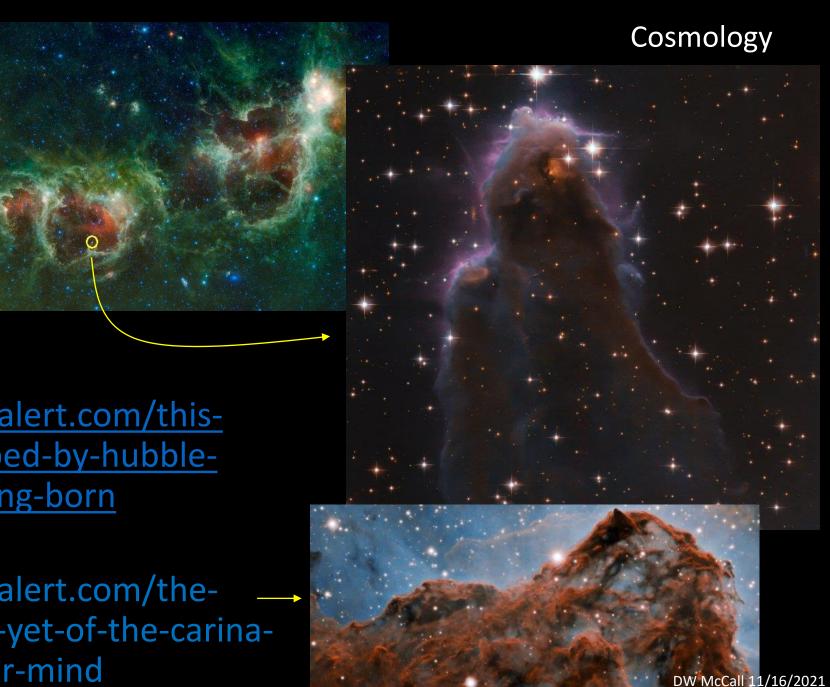
Read: How I Killed Pluto and Why It Had It Coming


Coming/dp/0385531087/ref=sr 1 1?ie=UTF8&qid=151303650

1&keywords=how+i+killed+pluto+and+why+it+had+it+coming

Solar System Exploration

- New Horizons, Pioneer 10 & 11, Voyager 1 & 2 are more than 50 AU* from the sun
- Voyager 1 and 2 are now in interstellar space, beyond the heliopause, still sending data


* 1 AU is the average distance of Earth to the Sun, or approximately 93 million miles

https://voyager.jpl.nasa.gov/mission/status/

https://gizmodo.com/new-horizons-captures-goosebump-inducing-image-as-it-ap-1846698155

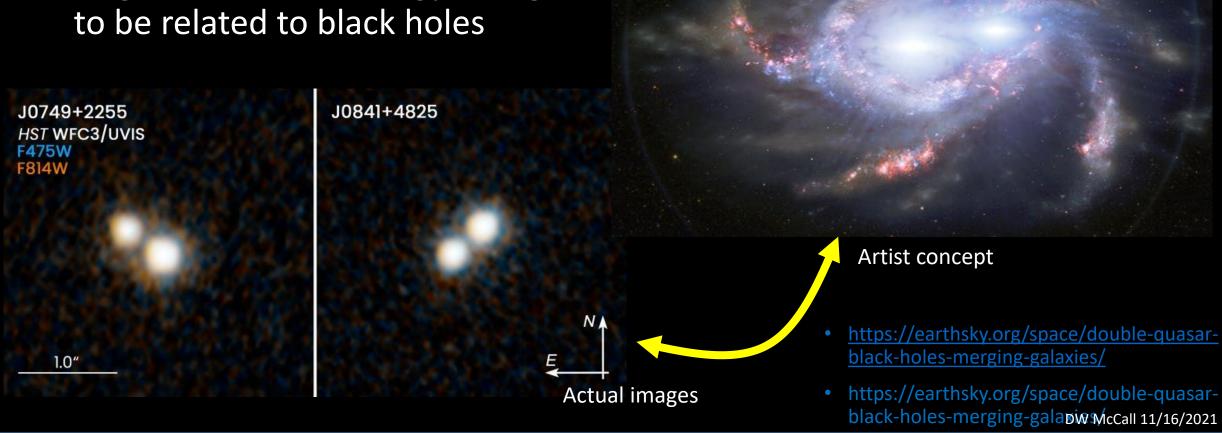
Star Birth

- J025157.5+600606 in the Soul Nebula
- FrEGGs Freefloating Evaporating Gaseous Globules
- https://www.sciencealert.com/this-stellar-nursery-snapped-by-hubble-shows-a-star-still-being-born
- Also see
 https://www.sciencealert.com/the most-detailed-image-yet-of-the-carina nebula-will-blow-your-mind

Distant Objects

- Hubble Space Telescope image of the spiral galaxy NGC 4603, which lies over 100 million lightyears away in the constellation of Centaurus
- https://scitechdaily.com/hubble -snaps-a-stunning-close-up-of-amagnificent-spiral-galaxy/

Stellar Cannibalism


- The Milky Way's core has a black hole and a cluster of tens of millions of stars around it
- 7% of the stars orbit around the black hole at a different velocity and axis of rotation
 - ..and have a vastly different metal content
- Implies that an external entity was "swallowed"
 - Victim may have been another globular cluster. Or a dwarf galaxy!

Infrared image of the central region of the massive cluster of stars at the Milky Way's core, about 27,000 light-years away

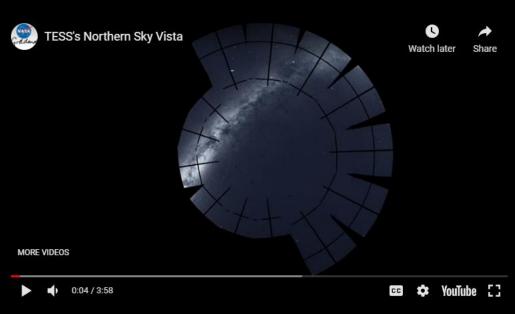
Double Quasars in Merging Galaxies

- 10-billion year-old quasars
- Huge amounts of energy thought to be related to black holes



Distant Objects

- Hubble captures a cluster of hundreds of galaxies of different shapes and sizes, some 1.4 billion light-years* away
- https://www.sciencealert. com/this-hubble-imageof-a-galaxy-cluster-is-justincredible


Cosmology

^{* 1} ly = 5,878,600,000,000 miles (I am approx. 0.0000000000000193 ly tall)

- TESS (Transiting Exoplanet Survey Satellite) maps the northern sky
- Nearly 100 confirmed planets and over 1,000 exoplanet candidates

https://bgr.com/science/tess-photo-exoplanet-hunter-survey/

Enabling Technology

JWST (James Webb Space Telescope) update

- Currently
 - In launch prep in Kourou, French Guiana
 - Planned launch date 12/18/2021
- Infrared observations
 - Improved view over Hubble; sees more
- Excellent overview at https://jwst.nasa.gov/content/webbLaun ch/assets/documents/WebbMediaKit.pdf

Links

- NASA Missions A-Z
 https://www.nasa.gov/missions
- Launches and Landings https://www.nasa.gov/launchschedule/
- NASA Budget https://www.nasa.gov/news/budget/index.html

Backup

Space Observatories

- Gamma-ray
 - Fermi -- dark matter, black holes and spinning pulsars
 - Swift -- gamma-ray bursts; cosmic explosions
- X-ray
 - Chandra -- quasars; clouds of gas and dust and particles sucked into black holes
- Ultraviolet
 - GALEX -- formation of galaxies: shape, brightness, size and distance
- Visible
 - Kepler exoplanets
 - Hubble -- deep space objects
- Infrared
 - Spitzer -- distant galaxies, black holes; comets in our solar system
 - Herschel -- look for water both in nearby comets and faraway dust clouds; peer into star nurseries
- Microwave
 - Planck -- remnants of the first light to shine freely in the universe, the Cosmic Microwave Background (CMB)

Planetary Missions - NASA

Science Mission Directorate

Discovery

Launch more and smaller missions using fewer resources and shorter development times

New Frontiers

Tackle specific solar system exploration goals identified as top priorities by consensus of the planetary community

Solar System Exploration

Directed Missions – complete NASA-assigned investigations that focus on prioritized planetary science objectives

Example Programs

- **Discovery Programs**
 - Deep Impact
 - Primary mission
 - Ram a spacecraft into comet Tempel 1, measure the ejecta
 - 370 kg at roughly 10.2 km/s => 19 Gigajoules or roughly 4.8 tons of TNT
 - https://www.nasa.gov/mission_pages/deepimpact/mission/index.html#.WibWNUqnGUk
 - Repurposed (extra) mission: EPOXI
 - Extrasolar Planet Observations and Characterization (EPOCh) and Deep Impact eXtended Investigation (DIXI), a flyby of comet Hartley 2
 - Kepler:
 - Discover hundreds of Earth-size and smaller planets in or near the habitable zone in our region of the Milky Way galaxy
 - Determine the fraction of the hundreds of billions of stars in our galaxy that might have such planets
 - Second Mission: K2
 - https://www.nasa.gov/mission_pages/kepler/overview/index.html

Kepler mission:

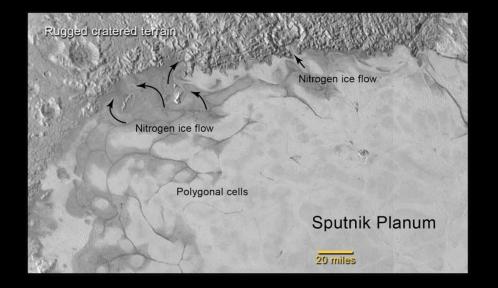
Candidate exoplanets: 4,496 Confirmed exoplanets: 2,337

Confirmed exoplanets less than twice Earth-size in the habitable zone: 30

K2 mission:

Candidate exoplanets: 515 Confirmed exoplanets: 178

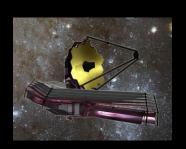
Example Programs


- New Frontiers Programs
 - New Horizons
 - Primary mission
 - Obtain a close look at Pluto and its moon(s)
 - https://planetarymissions.nasa.gov/missions/New%20Horizons/overview
 - 2nd part of mission
 - Visit a Kuiper Belt Object beyond Pluto
 - https://planetarymissions.nasa.gov/missions/New%20Horizons/overview
 - Ralph instrument
 - Joint project of Southwest Research Institute (SwRI), Ball Aerospace and GFSC (NASA's Goddard Space Flight Center)
 - Color and black-and-white maps of Pluto's surface and temperature
 - Mapped the presence of nitrogen, methane, carbon monoxide, water and other materials

Moon Orbits

Example Programs

- Explorers Program
 - MIDEX: Widefield Infrared Survey Explorer (WISE)
 - Launched December 14, 2009; primary mission complete in 2011, placed in hibernation
 - All-sky survey: three-quarters of a billion objects, including remote galaxies, stars and asteroids
 - Reactivated September 2013, renamed NEOWISE
 - New primary mission: identify the population of potentially hazardous near-Earth objects (NEO)
 - Secondary mission: characterize more distant populations of asteroids and comets to provide information about their sizes and compositions
 - https://www.nasa.gov/feature/ipl/nasa-s-asteroid-hunting-spacecraft-a-discovery-machine
 - SMEX: Imaging X-Ray Polarimetry Explorer (IXPE)
 - Nov 2020 launch
 - Study X-ray production in objects such as neutron stars and pulsar wind nebulae, as well as stellar and supermassive black holes
 - https://wwwastro.msfc.nasa.gov/ixpe/index.html



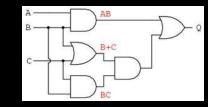
NASA Research Centers

- Ames: IT, fundamental aeronautics, bio and space science technologies
- Armstrong: Flight research
- Jet Propulsion Laboratory: Robotic exploration of the solar system
- Johnson: Human space exploration
- Stennis: Rocket propulsion testing and remote sensing technology
- Kennedy: Prepare and launch missions around the Earth and beyond
- Marshall: Space transportation and propulsion technologies
- Glenn: Aeropropulsion and communications technologies
- Goddard: Earth, the solar system, universe observations, and space communications and navigation
- Langley: Aviation and space research
- Wallops Flight Facility: Suborbital Research Programs

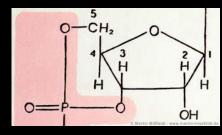
Ball Contributions to Missions

- James Webb Space Telescope optics
- New Horizons Pluto close-ups Ralph instrument, camera
- Spitzer Space telescope
 - Cryogenic Telescope Assembly (CTA)
 - The telescope, and two of the three science instruments embedded within the CTA: the Infrared Spectrograph and the Multiband Imaging Photometer.
- Hubble Space Telescope
 - Two star trackers, five major leave-behind equipment subsystems
 - Each of the five science instruments now operating on the telescope were Ball-designed and built.
 - Ball also fixed the early problem with the imaging system
- Kepler/K2 exoplanet discoveries; Ball built the observatory
- Deep Impact
- Worldview spacecraft
- NPP spacecraft

What it Takes


- Systems Engineering*
 - Systems Thinking applied to Engineering
 - Addresses complexity
 - Initially driven by the Apollo program
 - Four key facets
 - Technical
 - Rational/Logical
 - Social
 - Intuitive
 - Quality, cost, schedule, risk
 - Optimized trade space

Physics



- Chemistry
- Logic

Coding

Space Environment

- Extreme temperatures
- Vacuum
- Little to no gravity: "zero-g"
- High radiation (solar & cosmic)
 - Big challenge for human space flight
- Debris (meteoroids, manmade)

Launch Environment

- High vibrations & noise
- High g-forces
- Molecular heating
- Outgassing
- Failures
 - 3 out of 85 launches in 2016
 - 8.08% historically
 - 6.68% in the past 20 years

https://www.youtube.com/watch?v=M7wBN-U2KX

Spacecraft Anatomy

	Car	Spacecraft
Mission	get there	telecommunications, science, intelligence
Payload	You, cargo	RF (radio frequency), optical, UV/IR/gamma/etc.
Power	Alternator, battery	Solar cells, battery
Propulsion	Engine	Thruster
Fuel	gas, diesel	MMH, NTO, Xe
Structure	metal, composite, plastic	metal, composite, plastic
Materials	low cost	exotic & high cost
Guidance & Control	You	Autonomous Guidance, Navigation & Control
Sensors	You, gauges	light sensors, accelerometers
Actuators	steering, brakes	thrusters, reaction wheels, magnetic torquers
Temperature control	heater, radiator	heater, radiator
Wiring	wire harness	wire harness, fiber
Repair	accessible	not physically accessible once flying
Cost	\$Thousands	\$Millions

McCall Background

- Hughes Space & Communications 1988-2000
- Boeing Satellite Systems 2000-2012
- Ball Aerospace 2012-2017
 - Manager, Space Systems
- Cogestalt Group LLC 2017present
 - CEO

- BS in Computer & Electrical Engineering
- MS in Electrical Engineering
- MBA
- Ed.D., Organizational Leadership