Compost & Biochar

Biochar & Compost Work Better Together

Tomato Plants – Ventura County

Control (Soil)

Soil & Biochar 1

Soil & Biochar 2

Soil & Biochar & Compost

USDA, December 2019: compost with biochar as an approved conservation practice standard

United States Department of Agriculture

808-CPS-1

Natural Resources Conservation Service

INTERIM CONSERVATION PRACTICE STANDARD

SOIL CARBON AMENDMENT

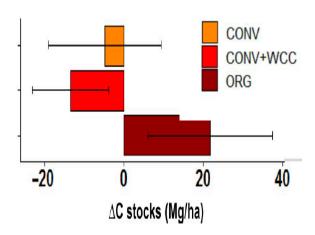
Code 808

(Ac)

DEFINITION

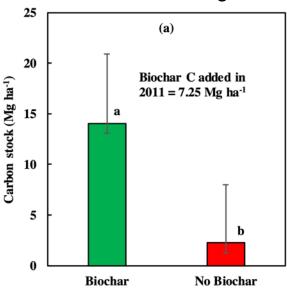
Using carbon-based amendments to increase soil carbon and improve the physical, chemical, and biological properties of the soil.

PURPOSES


- Maintain, increase, or improve soil organic matter quantity and quality
- Maintain or improve soil aggregate stability
- Maintain or improve habitat for soil organisms
- Improve plant productivity and health

Carbon Sequestration: Compost & Biochar

COMPOST


UC Davis, 2019
Soil Carbon Stock
17 years of compost addition
54% Remaining

Corn-Tomato rotation
CONV winter fallow
WCC-winter cover crop
ORG winter cover crop w/compost
Tautges, et al.

BIOCHAR

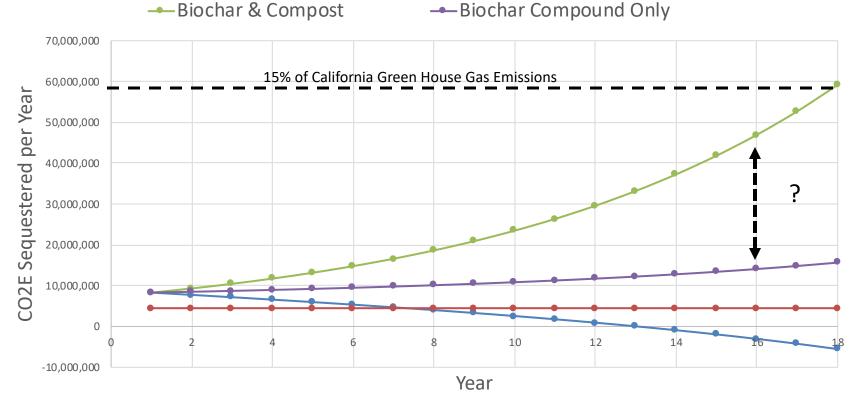
Iowa State, 2019
Soil Carbon Stock
6 Years after Biochar Applied
200% Remaining

Average of No-till corn, switchgrass, and low density grass Blanco, Laird, et al.

Biochar acts as CATALYST for Carbon Sequestration

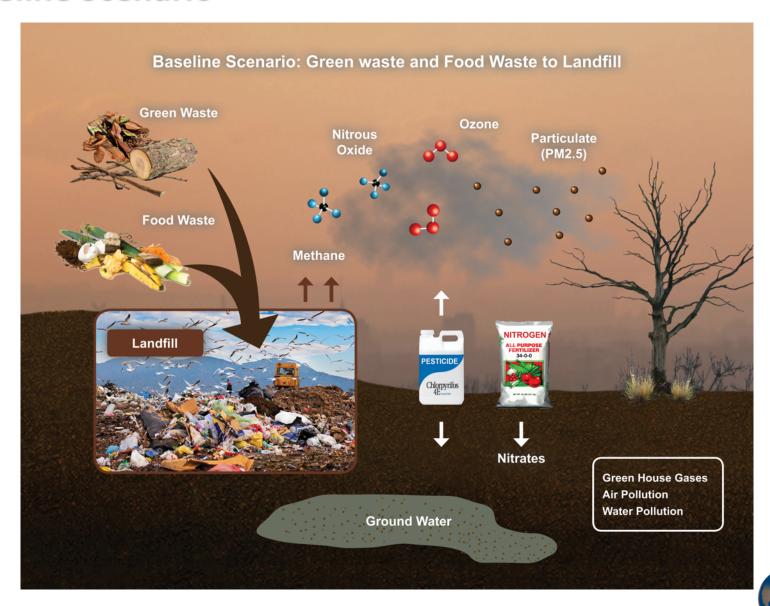
Our Own Turf Sequestration Experiments

Compost & 20% Biochar, Aerated, Top Dress, Drug In			
Dry w%, Organic Matter	Cal Lutheran	Sherwood CC	Lancaster Soccer
Before Treatment	6.3%	1.0%	10.1%
After Treatment	8.5%	2.0%	12.4%
9 months			13.0%
16 months	9.8%	2.6%	
28 months	?	?	?
Other Trials: Desert Mountain, Mission Trails, Hacienda			


Compounding Carbon Sequestration based on Total Input

Carbon Sync Modeling

Impact of Integrating Biochar and Compost to California Landscape on Carbon Sequestration


Compost - Continuous Decay Compost - Instant Decay

Potential to Offset California Green House Gas Emissions

Baseline Scenario

The Future

Opportunity – Co-composting research program

Commercial-Scale Co-composting of Biochar

Negative Air CASP system

Start: April 2020

Objectives:

- Determine of adding biochar accelerates composting process, time to maturity (\$\$)?
- Measure positive priming effect (reducing yield of compost – a good thing)?
- Establish how adding biochar improves beneficial microbial count?
- Product for market testing low cost compost/biochar mixture (1,800 cubic yards product)?

Test Marketing Opportunity (to justify production investment)

BE THE CATALYST Help Me Prove there is a Market

www.rickwilsonventures.com

Preorders for April-September Deliveries
Landscape & Garden Focus
Application Information on Site

Bulk (40 or 20 cubic yards) \$25 per Cubic Yard
Includes 3 pre-paid Lab tests for Carbon
(compare with \$115 per cubic yard)
1.5 Cubic Yard Supersack: \$52 per CY
Plus delivery

Could you Help me Get the Word Out?

